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The effect of a sudden density change on a slightly 
non-uniform flow 

By W. R. HAWTHORNE AND P. J. BANKS 
Engineering Department, University of Cambridge 

(Received 22 June 1960 and in revised form 24 March 1961) 

The effect of combustion or heating on a slightly non-uniform flow in a tube of 
constant radius is explored by examining a simplified model, in which a density 
decrease occurs across a plane actuator-disk normal to the axis of the tube. The 
flow is considered to be steady, axi-symmetric, incompressible and inviscid and 
to originate a t  an injector-plate which is situated upstream of the disk. This 
paper analyses and discusses the effects caused by the density decrease when the 
velocity of flow through the injector-plate has a fractional non-uniformity u,, 
when there is a curvature 0, of the injector-plate, and when the density decrease 
has a fractional non-uniformity 8,. It is shown that the non-uniformity of the 
flow far downstream of the disk caused by the disturbances ue and 0, is diminished 
by the density decrease; while that due to the disturbance 8, is increased, unless 
the density decrease occurs close to the injector-plate. The distance separating 
the injector-plate and actuator-disk is found to be an important parameter. 
When this distance is small, compared to the radius of the tube, and the density 
decrease is severe, a small disturbance u,, 8, or 8, may set up a pressure variation 
at  the injector-plate of many times the inlet dynamic pressure of the flow. It is 
conjectured that this pressure variation could affect the uniformity of velocity 
and composition of the flow through the injector-plate, and thus cause the 
disturbances u, and 8, to grow or diminish. 

1. Introduction 
In rockets, ramjets and turbo-jet combustion chambers a flow with large 

density changes occurs. The decrease in density caused by combustion con- 
siderably affects the pattern of flow. Such effects have been studied by Scurlock 
(1948), Tsien (1951), Emmons, Ball & Maier (1952) and others, in connexion 
with flow through a V-shaped flame-front stabilized at the centre of a duct. In  
these studies, the effect of the flame-front on the flow is due to the shape of the 
flame-front rather than to any non-uniformity of the approaching flow.? In 
practical cases the flow approaching the flame-front is generally non-uniform; 
for instance in rocket combustion chambers the flow of oxidant and fuel 
through the injector-plate varies with radial distance. 

The effect of combustion or heating on non-uniform flows is explored in this 
paper by examining a simplified model in which a density change occurs across 

t Ball (1951) considered the effect of shear in the flow approaching a V-shaped flame- 
front. 
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a plane actuator-disk normal to the main-flow direction. This actuator-disk 
would represent a flame-front if the non-uniformity of the flow at the front was 
identical with the flame-speed variation in the approaching flow, caused for 
instance by non-uniform mixture strength. 

In  the model examined (see figure l), a steady, axi-symmetric, incompressible, 
inviscid and slightly non-uniform flow in a tube of constant radius approaches 
a density-change actuator-disk normal to the axis of the tube. On the upstream 

I A X E  
1__1- 

symmetry 

I 
I 

I 

x = - a  x = o  2 = m  

Injector-plate . Density-change 
actuator -disk 

I n h i t y  
downstream 

FIGURE 1. Diagram showing flow model and nomenclature. 

side of the disk the flow is assumed to be of uniform density. Downstream the 
density may be either uniform or may vary owing to a slight non-uniformity in 
the density change at the disk. In  accordance with the assumption of inviscid 
flow there will be no heat transfer, so that, since the flow is also assumed to be 
incompressible, the density may be considered to be constant along a streamline, 
except across the disk. Thus the flow on either side of the disk is obtained by a 
small perturbation of a flow with uniform velocity and density, and the problem 
may be linearized by neglecting the products of pertui bations in the equations 
defining the flow. The effect of gravity on the flow is neglected. The disk is sup- 
posed to be stabilized at a finite distance downstream of a plate through which 
the fluid is injected, and the flow is assumed to continue for an infinite distance 
downstream of the disk. 

2. Solution for flow on either side of the density-change actuator-disk 
The type of flow, downstream of the disk, described above is termed stratified 

or non-homogeneous; the flow upstream may be regarded as a particular case of 
such a flow. Long (1953) has shown that the vorticity 7 in a steady, stratified, 
plane two-dimensional .flow varies along the streamlines as the velocity, of 
magnitude q,  changes, in accord with a relation of the form 

1 dP q2 'I = N(Y)+----;  pair 2 
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where p. is the density, Y a stream function such that d Y / d n  = - q  with n 
measured normal to w streamline, and His  constant along a streamline. Equation 
(1) is equation (8 )  of Long (1953) with 7 replacing ( - V 2 Y ) ,  q2 replacing (VY)2 ,  
and the term due to gravity omitted. The equation is also applicable to axi- 
symmetric flow with the stream function defined by d Y / d n  = -qr, because of 
the similarity between axi-symmetric and plane two-dimensional flow. The 
vorticity 7 is then the circumferential component. 

In the problem considered in this paper, the flow is axi-symmetric and involves 
a small perturbation of a uniform flow, with velocity U and density p, in the 
axial direction. We define the velocity components in the axial, x, and radial, r, 
directions to be U(1 +u)  and Uv respectively, and the density to be p(l+8),  
where u, v and 6 < 1; then, by substituting in equation (1) and neglecting 
products of perturbations, one obtains the equation 

Now U is constant and H and 8 depend only on Y ,  so that the vorticity is con- 
stant along the streamlines of the perturbed flow, to first order in the perturba- 
tions. These streamlines depart only slightly from the streamlines of the un- 
perturbed flow, which are lines of constant radius. Hence in the perturbed flow 
the vorticity is a function of radius alone to first order in the perturbations, and 
may be expressed as 

where Uu, is the value of the axial velocity perturbation at a plane where v and 

The flow may be considered to be the sum of the unperturbed flow and a per- 
turbation flow, and, since the products of perturbations are being neglected, the 
perturbation flow may be resolved into a number of parts. Thus if we write 
u = urn + u', where u' and ZI both approach zero at the same plane, then equation 
(3) shows that Uu' and Uv are the velocity components of the irrotational part 
of the perturbation flow. The rotational part is seen to have axial velocity Uu, 
and zero radial velocity. Therefore a perturbation stream function $, defined by 

av/ax = 0. 

qu' = -a$/ar and rv = a $ / a X ,  (4) 

satisfies Laplace's equation, which in axi-symmetric co-ordina tes is 

The solution of this equation which satisfies the boundary conditions, v = 0 at 
r = 0 and r = 1, the radius of the tube containing the flow being taken as the 
unit of length, is 

m 

n= 1 
$ = I: (Aneknx+Bne-kn2)rJl(knr)/kn, ( 6 )  

25-2 
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where A,, and B, are arbitrary constants, and k ,  are a series of constants deter- 

so that k, = 3.832, k, = 7-016, k ,  = 10.174, etc. Therefore the perturbation flow 
may be considered as the sum of a series of Fourier-Bessel harmonics. The nth 
harmonic of the perturbation stream-function, and of the radial velocity, has 
a radial form defined by the Bessel function Jl(knr), which has (n- 1) zeros 
between the tube axis and the tube wall. The factor (in anj7 harmonic) which is 
independent of the radius r,  e.g. k;l{Anekn"+ B,e-kn") in equation (6), will be 
referred to as the amplitude of the harmonic. 

Using equations (4) and (6) the velocity perturbations Uu and Uv in the flow 
oneither side of the density-change actuator-disk are found to be given by expres- 

sions of the form 00 

and (9) 

where the amplitudes u, and v, of the nth harmonics are 

U ,  = u,,+uA with uA = -(A,eknx+B,e-knZ) (10) 

and ZI n = (A,  eknz -  B, e-knZ). (11) 

The amplitude u,, of the nth harmonic of u, is defined by equation (8). The 
quantities u and v will be referred to as the axial and radial velocity perturbation 
fractions respectively, and u will be used to define the non-uniformity of axial 
velocity . 

An expression for the pressure-perturbation fraction p ,  that is the static 
pressure-perturbation divided by the dynamic pressure of the unperturbed flow, 
may be derived by equating the terms containing perturbations on either side 
of the equation of motion in the radial direction, and neglecting products of 
perturbations, from which one obtains 

Combination of this result with equation (3) gives 

au' av lan 

from which it may be concluded that 

p = -2u', (13) 
the constant vanishing because, at the plane where u' = 0, the flow is parallel 
to the axis. 

3. Application of boundary conditions 
The quantities uWn, A ,  and B, in the expressions for the perturbation fractions 

are determined by the boundary conditions at the injector-plate, at the density- 
change actuator-disk, and at an infinite distance downstream. The additional 
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suffixes 1,  2, a, and e will be used to denote conditions upstream of the actuator- 
disk, downstream of the actuator-disk, at the actuator-disk, and at the injector- 
plate respectively. 

The boundary conditions at the injector-plate are determined by the non- 
uniformity of the flow through the plate and the geometry of the plate. The plate 
is assumed to be symmetrical about the axis of the tube, and to be slightly curved. 
Hence the perturbation of the axial velocity at  the plate Ulue arises directly 
from the non-uniformity of the flow through the plate, and can be defined by 

The curvature of the plate will produce a radial velocity at the plate, which, as 
a fraction of U,, may be written 

where 0, is the angle by which the entering flow is deflected inwards from the 
axial direction due to the curvature of the plate. It is equal to the angle by which 
the surface of the plate deviates from that of a flat plate. Near the tube wall 
0, must approach zero so that the flow adjacent to the wall is injected parallel 
to the wall. 

The flows upstream and downstream of the density-change actuator-disk are 
matched at the disk by the conditions of conservation of mass and momentum. 
From conservation of mass, we derive that 

~ 1 U l ( ' + u a l )  = P Z ( ' + ~ , )  U i ( l + ~ a z ) .  

By neglecting the term containing a product of perturbations, and equating the 
terms corresponding to the unperturbed and the perturbation flows on either 
side of the equation, one obtains the results 

and ual = ua2 + 8,. 

Hence, using equation (S), the non-uniformity of the density change may be 
expanded into harmonics, to give 

m 

From the conservation, across the disk, of mass and radial momentum, it is 
apparent that the radial velocity is continuous across the disk, so that, using 
equation ( 1  6 ) ,  

(19)  

where h = p2/p1 defines the ratio of the densities of the unperturbed flow on either 
side of the actuator-disk. 

Conservation of momentum normal to the plane of the disk gives an equation 
which, on neglecting terms containing products of perturbations, equating the 
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terms corresponding to the perturbation flow on either side of the equation, and 
using equation (16) ,  becomes 

AP,, - Pa2 = 2(2ua, + 8, - 2huaJ7 

huml - u,, = ( 1  - A )  ual. 

which, with equations (13)  and (17) ,  reduces to 

(20) 

This equation defines the change, at the actuator-disk, of the rotational part of 
the perturbation flow, urn, which is otherwise invariant along the tube, in terms 
of the conditions a t  the disk. Thus it leads directly to an expression for the change 
in the vorticity of the flow at the disk, and the relation of this result to the work 
of other authors is discussed in 5 4.2. 

At an infinite distance downstream from the disk, the streamlines are assumed 
to be parallel. Thus a t  x = co, u', v and av/ax = 0, and U2urn2 is the only remaining 
velocity perturbation, so that, from equation ( 1  l ) ,  

A,, = 0. ( 2 1 )  

By substitution of the solutions for the velocity perturbation fractions, equa- 
tions (8) to ( l l ) ,  in the boundary conditions, equations (14 ) ,  ( 1 5 ) ,  ( 1 7 ) ,  (19) and 
(20) ,  and by use of equations ( 1 8 )  and ( 2 1 ) ,  expressions for u,,, A ,  and B, can 
be obtainedin terms of A, e-kna,  u,,, O,, and S2,, where a is the distance separating 
the injector-plate and actuator-disk. These expressions are shown in the Appen- 
dix, in which u,,, A ,  and B, are related to u,,, O,, and 6,, by influence ooeffi- 
cients. The equations stating the dependence of u, v andp on x, r,  u,,, A ,  and B, 
are also summarized in the Appendix. Using the Appendix, the flow pattern 
arising from any combination of the disturbing non-uniformities, u,, 0, and S2, 
can be assessed. The number of terms required in the summations for u, v and p 
will depend on the number of Fourier-Bessel harmonics required to form each 
disturbing non-uniformity. 

4. Discussion of solution 
4.1, Assumption of incompressible $ow 

The effect of the compressibility of the fluid will become appreciable when the 
Mach number of the unperturbed flow downstream of the density-change 
actuator-disk exceeds a value of about 0.3. The ratio of the Mach numbers of 
the unperturbed flow on either side of the disk is given by 

if the fluid is assumed to be a semi-perfect gas, since then p1 Tl = p2T2, for small 
Ml and M2. Hence the solution is adequate for 

h < 10M,2. ( 2 2 )  

If the temperature downstream of the density change were 4500"K, a very 
high value for flame temperature, then A would equal 0.07 and the above con- 
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dition would require Ml < 0.08. Combustion reactions in gas mixtures proceed 
at Mach numbers much less than this value, so that the assumption of incom- 
pressible flow is justified for the flow of gas mixtures normally through an 
actuator-disk at which combustion takes place. 

In rocket combustion chambers, the Machnumber of the flow when combustion 
is completed is determined by the ratio of the cross-sectional areas of the com- 
bustion chamber and the nozzle throat, where M = 1. If this area ratio equals 
3 or more then M, < 0.3 and compressibility effects may be neglected. 

4.2. Vorticity change at density-change actuator-disk 
The change in the vorticity of the flow at the disk is given by equation (20) with 
equations (3) and (16), from which 

(23) 
(1 - 4 aua1 

72-71 = U l T X .  

Hence the vorticity of the flow is changed at the disk by an amount determined 
by the radial gradient of axial velocity just upstream of the disk and the density 
ratio across the disk. The vorticity change is zero if the density change is small, 
and does not depend directly on any small non-uniformity in the density change 
at the disk, to first order in the perturbations. 

Hayes (1957) has studied the general case of rotational compressible flow 
through a surface of discontinuity in density. Hayes shows that only the com- 
ponent of vorticity tangential to the surface experiences a change as the flow 
passes through the surface, and that this change is made up of two part8, both 
of which depend on the ratio of the densities on either side of the surface. One 
part of the change is proportional to the gradient along the surface of the mass 
velocity normal to the surface, and this part reduces to equation (23) for the 
conditions of the problem considered in this paper. The other part varies with the 
product of the component of velocity tangential to the surface and its gradient 
in its own direction, which in this paper is v(av/ar) and so is zero to first order. 
This latter part provided a vorticity change at the flame-fronts studied by the 
authors cited in $1.  In  the papers by these authors, the flame speed, which is 
the velocity of flow normal to and into a stationary flame-front, and the density 
upstream of the flame, were considered constant, so that the part of the vorticity 
change which is important in this paper was identically zero. 

4.3. Case of injector-plate and actuator-disk at a n  infinite 
distance apart (a  = 00) 

If the injector-plate is at an infinite distance from the actuator-disk, then there 
is some point between them at which the radial velocity approaches zero. Hence 
the relevant disturbing non-uniformities in this case are upstream vorticity, 
represented by uml, and non-uniform density change at  the disk, 8,. The upstream 
vorticity may be caused by either or both of the disturbances u, and 0, at the 
injector-plate, and the expression for the amplitude of the nth harmonic of uml 
is, from the Appendix, 

(24) ~ m l n  = u e m  + e e n -  
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The main results of the analysis in this case do not depend on the form of radial, 
variation of the disturbances. For with a = 00, so that E, = eckna = 0, it is seen 
from the table in the Appendix that umn, A ,  and Bn are independent of kn. 
Therefore a t  x = - co, x = 0 and x = + co, where eknx = 0, e*knz = 1 and e-knx = 0 
respectively, the amplitude of the velocity perturbation caused by a disturbance 
consisting of a single harmonic of unit amplitude is the same for all harmonics. 
Thus the radial form of a velocity perturbation is identical at the disk and at  an 
infinite distance upstream and downstream of the disk, even if the disturbance 

0 X 
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Density-change 
actuator-disk 

FIGUFLE 2. Axial velocity perturbations caused when the injector-plate is at an infinite 
distance upstream of the density-change actuator-disk. The figure is to  scale for A = 0.4. 
(a) ------, u/u,,; ---- , U,U/U~U,~. (a) -, u / S ~ ;  ----, U , U / U ~ G ~ .  

consists of more than one harmonic. For example the amplitude of the nth 
harmonic of the axial velocity perturbation fraction just upstream of the 
actuator-disk is, from equation ( l o ) ,  

Ualn = u m l n -  AIn- BIw 

which, using the influence coefficients in the Appendix, becomes, with E ,  = 0, 

ualn = ( u e n + O e n ) - ( 1 - A )  (Uen+Oen)++&n, 

Ual = hu,l + +a2. 
and, with equations (24), (8) and ( 1 8 ) ,  this can be summed to give 
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The variation of the axial velocity perturbation fraction, expressed as u/uml, 
and of the perturbation, expressed as UuIUluml, in the axiql, x, direction along 
a line of constant radius takes the form shown in figure 2, which shows separately 
the effects of uml, figure 2 (a) ,  and a,, figure 2 (b).  The perturbation fraction is 
indicated by full lines, and the perturbation by full lines upstream of the disk 
and broken lines downstream. The ordinates of significant points on the curves 
are shown in terms of the density ratio A, and the curves are drawn to scale for 
h = 0.4. The scale of x is omitted since the various Fourier-Bessel harmonics 
of a perturbation differ in their manner of variation with x, though the harmonics 
behave identically at x = - co, x = 0 and x = + co as explained above. 

At equal distances on either side of the disk the irrotational part of the per- 
turbation Uu' is equal in magnitude and opposite in sign, for either of the dis- 
turbances 8, and uml. From figure 2 it may be seen that these disturbances cause 
identical values of Uu' at the disk, and thus everywhere in the flow, for a par- 
ticular Fourier-Bessel harmonic, if 

4 = -2(1-h)um1.  ( 2 6 )  

Identical values of Uu' lead to identical values of w and p ,  from equation (12).  
Hence the radial velocities and pressure perturbations in the flow produced by a 
disturbance uml may be identically reproduced by a disturbance 8, which satisfies 
equation (26), and vice versa. The exceptional case h = 1 is discussed in 3 4.4.4 
in connexion with the similar result obtained when a is finite. 

From figure 2 ( a ) ,  for which uml + 0 and 6, = 0, it is seen that a disturbing 
non-uniformity of axial velocity uml is severely attenuated by density decrease, 
since um2 = h2uml; the axial velocity perturbation is also attenuated by the 
ratio A. The axial variation of the perturbation is seen to be of very simple form, 
the perturbation just upstream of the disk being equal to that far downstream, 
and vice versa. 

From figure 2 (b) ,  for which uml = 0 and 6, + 0, it  is seen that a disturbance S2, 
representing a non-uniform density change at the disk, causes an irrotational 
upstream flow, uml = 0, to become rotational downstream of the disk. The magni- 
tude of the rotational part of the downstream axial velocity perturbation 
fraction or non-uniformity u,, increases as the density ratio h decreases, and 
approaches the maximum value of (Q8,) as the downstream density approaches 
zero, h -+ 0. 

4.4. General case 

4.4.1. The  effect on the results of the radial form of a disturbance 

The distance a separating the injector -plate and the density-change actu- 
ator-disk is an important parameter in the problem, and appears in the results 
of the analysis in the quantity 8, = eckna. Hence the effect of a on the velocity 
perturbations caused by a disturbance consisting of a particular Fourier-Bessel 
harmonic depends on the number n of the harmonic. If a disturbance con- 
sists of more than one harmonic, then, in general, the radial form of a resulting 
velocity perturbation will difler at the injector-plate, the disk, and infinity down- 
stream, in contrast to the result obtained in the special case a = co, $4.3. The 
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factor k,a, which determines the effect of a on the results for the nth harmonic 
of a disturbance, is approximately equal to m times the ratiaof a and the radial 
distance between adjacent zeros of the radial velocity perturbation resulting 
from that harmonic. This rough equality becomes more exact with increase of 
the value of (n- l), the number of zeros of the radial velocity perturbation 
between the tube axis and the tube wall. 

The effect on the results of a being finite rather than infinite is greatest for the 
primary disturbance harmonic, n = 1, so that in the following discussion the 
disturbances are considered to consist of this harmonic alone. The results for a 
disturbance consisting of the nth harmonic alone can be obtainedfroh those for 
the primary harmonic simply by multiplying the values of a by the ratio ( k J k J .  
The flows resulting from each disturbance acting singly are discussed in the 
following sections. 

4.4.2. Plow caused by non-uniform axial velocity at the injector-plate (disturbanceu,) 

The variation of (u/u,) and (Uu/U,u,) with x is shown in figure 3 for values of a 
of 0, ap, /3 and co, where /3 = kclln 2 .  The arrangement of this figure is similar 
to that of figure 2 (a )  and the curves from figure 2 (a) ,  for a = co, are repeated 
on it. The variation of the axial velocity non-uniformity (u/ue) is shown by the 
full lines, and it is seen that as a is reduced so is the attenuation (1 - (u,,/u,)) of 
the disturbance by the density decrease. The attenuation increases as the 
density ratio h is decreased, for all values of a except zero. In  the limiting case of 
a = 0, the density change occurs immediately after injection and the flow is 
invariant along the tube. The axial velocity perturbation ( Uu/Ulue) is shown on 
figure 3 by full lines upstream of the disk and broken lines downstream. It is 
seen that the axial velocity perturbation is greater at infinity downstream than 
at the injector-plate for a < p, and less for a > p. 

The variation with a of the upstream value of the rotational part of the axial 
velocity perturbation fraction, urn., is also indicated on figure 3. It is seen that 
Urn1 increases as a decreases; therefore, since u is nowhere greater than u,, 
u; = (ul - uml) also increases in magnitude as a decreases. Hence, from equation 
(13), it  is seen that the pressure perturbations upstream of the disk increase in 
magnitude as a decreases. The radial pressure variation set up at the injector 
plate by the disturbance is of particular interest, since this variation may alter 
the uniformity of injection, and thus the disturbance, if the rate of injection of 
fluid at the plate is pressure controlled, as in liquid rockets. The pressure per- 
turbation fraction at the injector-plate, p,, is shown on figure 4, plotted against a, 
for various values of A. It is seen that for a < 0.1 and h < 0.2, conditions which 
may occur in liquid rockets, then p ,  > u,. Hence under these conditions a radial 
pressure variation of many times the inlet dynamic pressure (aplU,2) may be 
obtained at the injector-plate, even if u, is small. 

The maximum value of the radial velocity occurs at the disk, since u’ defines 
&/ax, equation (12), and is of constant sign on either side of the disk, changing 
sign at the disk (see figure 3). The variation of vul, the radial velocity at the disk 
as a fraction of U., with a and h is shown in figure 5. Because of the difference in 
the radial forms of vul and u,, the maximum values a,, and 4, are used for com- 
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F I Q ~ L E  3. Axial velocity perturbations caused by a disturbance u, of primary form. 
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FIQURE 4. Pressure-perturbation fraction a t  the injector-plate caused 
by a disturbance u, of primary form. 

parison. In  the analysis, it is assumed that v Q 1. From figure 5 it is apparent 
that this assumption is not valid for h < 0.1 and 0 -= a < 0.1, since under these 
conditions val 9 u,. However, this range of conditions is more restricted than 
those stated above for which p ,  >> u,, so that appreciable radial pressure varia- 
tions may be caused at the injector-plate, though the radial velocity is every- 
where small. 
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Q 

FIGURE 5. Radial velocity perturbation fraction at  the density-change actuator-disk 
caused by a disturbance u, of primary form. Maximum values are compared. 

4.4.3. Flow caused by a curved injector-plate (disturbance 0,) 

In  the absence of density change a curved injector-plate is seen, from equation 
(24 ) ,  to cause tl uniform flow to develop a non-uniformity of axial velocity with 
the same amplitude as 0,. This non-uniformity will be attenuated in the manner 
described in 9 4.3 by a density decrease occurring at a plane far downstream of 
the injector-plate. The change in this attenuation when the density decrease takes 
place at a finite distance downstream of the injector-plate is shown by figure 6, 
in which the variation with a of u,~, the non-uniformity of axial velocity far 
downstream of the disk, is shown for various values of A. The attenuation 
(1 - (?2,J(?,)] of the disturbance is seen to decrease with a except near cc = 0, 
and to increase as the density ratio h is reduced, for all values of a. 

2.0 

1.5 

1.0 

0 5  

0 
a 

FIGURE 6. Non-uniformity of axial velocity far downstream of the density-change 
actuator-disk, caused by a disturbance 0, of primary form. Maximum values are compared. 



Effect of density change on a non-uniform flow 397 

It may be shown that the velocity perturbation fractions u and v are every- 
where of the same order of magnitude as the disturbance, Be for all values of a 
and A. However, an appreciable radial pressure variation may be set up at  the 
injector-plate, as shown by figure 7 where p ,  is plotted against a for various 
values of A. It is seen that a radial pressure variation of many times the inlet 
dynamic pressure may be obtained at the injector-plate for h < 0.1 and 
0 < a < 0.1, even if 8, is small. 

(1 

FIGURE 7. Pressure-perturbation fraction at the injector-plate caused by ti 

disturbance 8, of primary form. Maximum values are compared. 

4.4.4. Flow caused by a non-uniform density change (disturbance 8,) 

It is apparent from the table of influence coefficients in the Appendix that 
the values of A ,  and B,,, and therefore of the iriotational part of a velocity per- 
turbation, caused by a disturbance 8, are identical with those caused by a dis- 
turbance u,, if 

Hence, in view of equation (12) ,  the discussion in Q 4.4.2 of the radial velocities 
and pressure perturbations caused by a disturbance u, applies also to the flow 
caused by a disturbance S,, except when h = 1. The exception arises because if 
there is no density change in the unperturbed flow, the disturbance u, is invariant 
along the tube, whereas the disturbance 8, necessarily sets up a discontinuity 
in u at the disk (see equation (17)) .  However, the radial velocities and pressure 
perturbations due to 8, are small when h = 1, so that the conditions for an 
appreciable pressure variation to be set up at the injector-plate by 8, are as stated 
for u,. For density change caused by combustion it is possible that such a pres- 
sure variation may alter the non-uniformity of the mixture ratio of the injected 
fluid and thus cause the non-uniformity of the density change to grow or diminish. 

The non-uniformity of axial velocity far downstream, u,,, caused by this 
disturbance is shown on figure 8 plotted against a for various values of A. It is 
seen that if there is no density change in the unperturbed flow, h = 1, then u,, 
varies from zero when a = 00 to the value of - 8, when a = 0. The effect of density 
decrease is to amplify this non-uniformity for a > /I and attenuate it for 0 < a < p, 

(27) 8, = -2(1-h)ue .  
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where 
of a as A approaches zero. 
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= killn 2 = 0.181. Thus um2 approaches the value of - +S2 for allvalues 

a 

-0.2 

- 0 4  
.o" 
-z 
8 
3 

- 0.6 

- 0 8  

-1.0 

a i 

FIGURE 8. Non-uniformity of axial velocity far downstream of the density-change 
mtuator-disk, caused by a disturbance 6, of primary form. 

The authors wish to acknowledge the assistance of Mrs P. Camm in carrying 
out the calculations for the figures. 
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Appendix : summary of solution 
Disturbing non-uniformities 

and 

Besulting perturbation fractions 

uj = ujnq,(knr) ,  vj = 2 vi2aJl(knr) and p j  = -2uj., 
m m 

n=l n = l  

with uin = umjn + u;~,  uin = - (Ajn eknx + Bin e-knx), 

where j = 1  for - a < x < O ,  j = 2  for O < x < m .  
vin = A,, eknx - Bin e-knx, 
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1 u,,, A ( ( L A )  ----+2 ,) h ( g q + " n - c :  
h h 

A1n 1 1--En 

0 0 

Here k, are the roots of J,(k,) = 0, thus k, = 3.832, k, = 7.016, k, = 10.174, etc., 

h = p2/p1, E ,  = e-kna and E = ( [ 1 / ( 1 - h ) ] - 2 a n + e ~ } .  


